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ABSTRACT

At present no single texture analysis approach can provide
automatic classification to the accuracy required for radio-
therapy applications. The method presented was developed
to classify areas within the gross tumor volume (GTV), and
other clinically relevant regions, on computerized tomogra-
phy (CT) images. For eight bladder cancer patients, CT infor-
mation was acquired at the radiotherapy planning stage and
thereafter at regular intervals during treatment. Textural fea-
tures (N=27) were calculated on regions extracted within the
bladder, rectum and a region identified as clinically relevant.
The sequential forward search (SFS) method was used to re-
duce the feature set (N=3). The results demonstrate the sig-
nificant sensitivity of the reduced feature set for classification
of any orthogonal CT image and the potential of the approach
for radiotherapy applications.

Index Terms— Texture analysis, pattern recognition,
computed tomography, radiotherapy

1. INTRODUCTION

The goal of radiotherapy is to deliver as high a dose of ra-
diation as possible to diseased tissue whilst sparing healthy
tissue. In radiotherapy planning, delineation of the GTV is
based on visual assessment of CT images by a specialist radia-
tion oncologist. With highly conformal radiotherapy now rou-
tine, faithful distinction of the GTV is paramount to limit nor-
mal tissue toxicity given the high radiation dose used to treat
deep-seated tumors. However accurate definition of the GTV
on CT images requires considerable clinical experience and
as a consequence of this complex image interpretation pro-
cess, significant inter- and intra-clinician variability has been
observed in the contouring of tumors of the prostate, lung,
brain and oesophagus [1]. A computer-assisted approach for
classifying tissue and assisting in the delineation of the GTV
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would therefore be of great benefit to clinicians. Several au-
thors have investigated the use of two-dimensional (2D) tex-
ture analysis to establish an objective method for differenti-
ating pathology on CT images [2, 3]. Extension to three-
dimensions (3D) has also been performed on CT and other
imaging modalities [4, 5, 6, 7, 8]. Here a 2D texture analy-
sis methodology was developed that uses available 3D image
information to determine textural features independently on
axial, coronal and sagittal regions of interest on CT image
data at the radiotherapy isocenter. In this way the methodol-
ogy closely follows the manual approach used by clinicians
to define the GTV.

2. TEXTURE ANALYSIS

In this work the classification of the bladder, rectum, and
a clinically relevant region defined as other was investi-
gated using computational methods based on statistical and
fractal texture analysis. The statistical methods used were:
first-order (FOS), based on analysis of the image histogram;
second-order, based on gray-tone spatial dependence matrices
(GTSDM); and higher-order, based on gray-tone run length
matrices (GTRLM).
Fractals have been used to describe the degree of irregu-

larity of a textured surface and to establish simple rules for the
assembly of complex structures found in the natural world.
The advantage of fractal-based approaches over statistical-
based approaches is that only a single measure is required
to describe the textural properties of an image, which offers a
considerable computational benefit.

2.1. First-Order Statistics

From the distribution containing the occurrence probability of
image gray-levels seven statistical features, commonly used
to describe the properties of a distribution, were computed.
These were: mean; variance; coarseness; skewness; kurtosis;
energy; and entropy.
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2.2. Gray-Tone Spatial Dependence Matrices

Measures to detect second-order differences are based on the
probability of finding a pixel that has gray-level i at a distance
ds and angle α from a pixel that has gray-level j. Calculat-
ing the probability measure over an image forms a GTSDM.
Here, four GTSDMs were calculated in the directions, 0o;
45o; 90o; 135o with ds = 1. A set of 14 textural features
was computed from the GTSDMs [8].

2.3. Gray-Tone Run Length Matrices

In this higher-order approach, GTRLMs contain information
on the run of a particular gray-level combination (i, j) in a
direction α. The number of pixels contained in a run is the
run-length. Here, four GTRLMs were calculated in the di-
rections 0o; 45o; 90o; 135o on linearly adjacent pixels in the
specified directions. A set of five textural features was com-
puted from the GTRLMs [8].

2.4. Fractal Texture Analysis

A bespoke box-counting approach was used to estimate the
fractal dimension of tumor regions. The box-counting di-
mension is closely related to the concept of self-similarity,
which is implemented by dividing a self-similar structure into
smaller elements, each a small replica of the original struc-
ture. This sub-division is used to characterize a structure
by a self-similarity dimension. For the case when this ap-
proach is implemented using the box-counting method, the
self-similarity dimension is the box-counting dimension. For
any bounded subset A inR

n the box-counting dimensionDb

is defined as follows. Let Nr(A) be the smallest number of
sets of size r that cover A. Then,

Db(A) = lim
r→0

log Nr(A)

log(1/r)
. (1)

Sub-dividing R
n, which in this case was a CT image, into a

lattice of grid size r × r, it follows that Nr(A) is the num-
ber grid boxes containing elements of interest in A. The
box-counting dimension Db and Nr(A) are connected by the
power law relation, Nr(A) = 1/rDb(A).

3. CLINICAL DATA ACQUISITION

Computerized tomographic images for eight bladder cancer
patients (six male and two female), treated with a radiation
dose of 52.5 Gy (20 fractions/4 weeks) at the Edinburgh Can-
cer Center (ECC) were used in this study. The age range of
the patients was 63 to 81 years and the mean 74 years. Prior
to treatment each patient received a CT scan, with a presumed
empty bladder, which was used to: define the tumor volume
for treatment; define critical anatomical structures; determine
the optimum radiation beam arrangement; and estimate the
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Fig. 1. Axial CT image through the pelvis showing show-
ing: 1. Bladder, 2. Rectum, 3. Region of multiple pathology
(Other). The image was acquired using a 3 mm slice thickness
with a pixel size in the image plane of 0.977 mm.

dose delivered to the patient. During the course of treatment
CT scanning was performed twice weekly. Seven patients
were scanned using a 3 mm CT slice thickness and one pa-
tient using a 5 mm CT slice thickness. All repeat CT scans
were registered against bony anatomy on the corresponding
planning scan.

4. ALGORITHM

4.1. Feature Calculation Algorithm

Regions of interest (ROI), defined by selection of the smallest
square region that adequately covered the rectum and would
fit within the bladder, were calculated on the axial CT slice
containing the radiotherapy isocenter. The control region, re-
ferred to as other, was chosen to contain multiple pathology.
Fig. 1 shows a 3 mm axial CT image on which the ROIs are
clearly visible. On each ROI, features (N=27) were calcu-
lated using FOS, GTSDM, GTRLM and the fractal approach
described.

4.2. Feature Reduction

To reduce the complexity of the 27 × 3 feature matrix, fea-
tures with limited classification power were removed using
the SFS algorithm. For the original set of candidate features
Y = {yi|j = 1, 2, . . . , D} the reduced feature set X =
{xi|i = 1, 2, . . . , d, xi ∈ Y } was selected by optimizing
the criterion function J(.), which was chosen to be the min-
imum probability of error. For X the probability of correct
classification (ξ) with respect to any combination was, Ξ =
{ξi = |1, 2, . . . , d}. From this the minimum probability of
error for the space spanned by (ξ) for each class ωi was cal-
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culated from,

E(Ξ) =

∫ [
1 −max(P (ωi|ξ))

]
p(ξ)dξ. (2)

4.3. Feature Clustering and Visualization

Sammon mapping was used to generate a 2D representation
of the multi-dimensional feature space and assess the classi-
fication possible from different combinations of textural fea-
tures. This is a non-linear technique used to transform amulti-
dimensional pattern space into a lower dimensional pattern
space in which multi-dimensional inter-pattern distances are
preserved. For a set {xi} of n d-dimensional patterns, where
di,j represents the distance between patterns xi and xj in d-
dimensional pattern space, there exists a mapping to a lower
dimensional pattern spacem, where (m < d), andDi,j is the
distance between xi and xj in m-dimensional pattern space.
The mean-square-error between the two distance measures is
defined as,

E =
1∑ ∑
d(i, j)

∑ ∑ [d(i, j) − D(i, j)]
2

d(i, j)
, (3)

where
∑ ∑

are over the set {(i, j) : 1 ≤ i < j ≤ n}.

5. RESULTS AND DISCUSSION

The performance of the technique was investigated under two
test conditions. In the first all of the available features (N=27)
were used to classify bladder, rectum and other pathology on
axial, coronal and sagittal CT image slices at the treatment
isocenter. In the second a reduced feature set (N=3) was used
to classify the same data. The classification results achieved
using all of the available features are shown in Fig. 2, 3, and
4. The classification results achieved using the three most
significant features are shown in Fig. 5, 6, and 7.
The texture analysis approach presented has been specif-

ically designed to deal with classification of calibrated CT
image data, which guarantees the relationship between CT
Hounsfield units and electron densities used in radiotherapy
planning. No significant discrimination was observed for the
classification of the bladder, rectum and other region using
all of the available features. This is shown in Fig. 2, 3, and
4. Significant discrimination between the three groups was
achieved using the reduced feature set as shown in Fig. 5,
6, and 7. The best three features, all from the GTSDM ap-
proach, were: f1, angular second moment (ASM); f3, corre-
lation; and f4 variance. Importantly for this work, coincident
classification of the textural feature data in each orthogonal
plane has the necessary sensitivity and specificity for radio-
therapy applications and has the potential to form the basis
of a computer-based procedure for accurate delineation of the
GTV on CT, magnetic resonance (MR) and positron emis-
sion tomography (PET) images. This is vitally important for

two reasons. Firstly to determine the optimum size and shape
of the GTV, which has been shown to be different when de-
fined by different oncologists [1]. Secondly, as stated by the
International Commission on Radiation Units and Measure-
ments (ICRU), the GTV may seemingly be different in size
and shape, sometimes significantly, depending on what ex-
amination technique is used for evaluation.

6. CONCLUSION

Estimating orthogonal textural properties at the radiotherapy
isocenter offers information on pathology that is presently not
available. The lesson learned is that texture analysis can be
used to differentiate pathology on CT in any of the orthogonal
image planes. Further research is required to establish the
influence of the many parameters that can be adjusted in the
second- and higher-order approaches.
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Fig. 2. Classification of axial data using all features.
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Fig. 3. Classification of coronal data using all features.
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Fig. 4. Classification of sagittal data using all features.
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Fig. 5. Classification of axial data using three features.
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Fig. 6. Classification of coronal data using three features.
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Fig. 7. Classification of sagittal data using three features.
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